像差对三镜型线聚焦滤波器效能影响的数值研究

李秉研, 熊晗*

苏州科技大学数理学院, 江苏 苏州 215009

摘要 线聚焦滤波技术能够大幅缓解甚至解决目前聚变装置中的等离子体堵孔效应及激光装置规模庞大等问题, 在聚变激光装置中具有较广阔的应用前景。采用像差的衍射理论,分析了各类像差对三镜型线聚焦滤波器效能的 影响。给定滤波系统中评判像差影响时采用的两个重要参量(输出光束的近场对比度及滤波狭缝的内边缘强度) 及其容许范围;在滤波器中引入不同类型和大小的像差,根据参量的变化获得各类像差的容许值,并与传统的针孔 滤波器进行对比。结果表明:透镜上存在的各类像差都会导致波面上产生各种非均匀的相位变化,并降低光束质 量,而像差导致的弥散或形变也会使滤波狭缝内边缘的辐照强度发生变化,即随像差增大而不断降低。对三镜型 线聚焦滤波器效能影响最大的像差来自于第一块柱面镜上的球差和场曲。

关键词 光学设计;线聚焦空间滤波;像差

中图分类号 TN248.1 文献标识码 A

Numerical Research into Aberration Effect on Efficiency of Three-Lens Slit Spatial Filter

Li Bingyan, Xiong Han*

School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China

Abstract Slit spatial filtering technology can be used to significantly ease or even solve problems related to plasma pinhole closure and large scale in current high-power lasers for fusion, which has broad application prospects in fusion laser facilities. According to the diffraction theory of aberrations, this paper numerically analyzes the aberration effect on efficiency of a three-lens slit spatial filter. Two important parameters (near-field contrast of output beam and intensity on inner edge of filter slit) are considered as evaluation parameters of aberration effect in a given filtering system, and the permitted percentages to be changed are given. Different types of aberrations with different magnitudes are introduced into the filtering system, and the tolerance of each aberration is obtained according to the change of parameters. The introduced filtering system is compared with conventional pinhole filters. The results demonstrate that all types of aberrations on the lens may introduce various inhomogeneous phase changes in the wave-front of a light beam and degrade beam quality. In addition, dispersion or deformation caused by aberrations. The most noteworthy aberrations relative to the three-lens slit spatial filter are the spherical aberration and field curvature of the first cylindrical mirror.

Key words optical design; slit spatial filtering; aberration

- OCIS codes 220.2740; 070.6110
- 1 引 言

光路中存在各种空间缺陷,例如灰尘、刮痕和光 学器件不够纯净等,导致激光会不可避免地遇到空 间频率调制,以及调制后的能量在传输过程中经历 快速的非线性增长,尤其是在大型聚变激光装置中 会引起小尺度自聚焦^[1]等现象,破坏光束质量^[2],损 伤光学媒介,是限制激光功率及能量提升的因素 之一。

doi: 10.3788/AOS201939.0822002

传统的针孔滤波器^[3-6]由两个正透镜和位于透 镜共焦面上的圆形或锥形滤波光阑组成,滤波光阑 可以滤除空间调制中迅速增长的中高频率成分,提 高光束的近场质量。聚变激光装置中光束的焦斑强 度极高,而滤波光阑由于截止频率的限制必须小于

收稿日期: 2019-03-15; 修回日期: 2019-04-07; 录用日期: 2019-04-17

基金项目:国家自然科学基金(11504255)、江苏省十三五重点学科(20168765)

^{*} E-mail: xh1980xh@126.com

一定的直径才能有效滤波,因此,滤波光阑不得不承 受强辐射,容易出现材料烧蚀离化现象,喷发出的等 离子体会阻碍后续脉冲在中间导通区域的正常通 行,形成等离子体堵孔效应^[7-9],限制激光装置的光 脉宽和能量提取效率。改变滤波光阑形状和增大透 镜焦距能在一定程度上缓解这一问题,但也会使得 聚变激光装置的规模非常庞大,同时针孔滤波器还 必须置于高真空环境中,以避免强聚焦导致的空气 击穿现象^[10-11]。

相比于针孔型空间滤波器,新型的线聚焦滤波 器具有更优异的性能。2012年, Erlandson^[12]提出 了一种四镜型线聚焦滤波器,该滤波器利用两对沿 轴向位置错开的柱面镜对光束分别进行子午面和弧 矢面的一维空间滤波,由于透镜错开,故而两个方向 的聚焦位置也错开,焦点变成了两条正交焦线,从而 增大了焦斑面积,降低了远场强度。这一特性使得 线聚焦滤波器能够大幅缓解甚至可以解决目前聚变 装置中存在的等离子体堵孔效应及激光装置规模庞 大等问题,在未来聚变激光装置中具有极大的应用 潜力。然而,四镜型线聚焦滤波器在器件数量上比 针孔滤波器多一倍(包含四块透镜和两个狭缝滤波 光阑),使得装置成本和安装准直难度增加。为了减 少器件数量,2014年,Xiong等[13]提出了一种三镜 型线聚焦滤波器,该滤波器利用两块柱面镜和一块 球透镜完成了两个方向的一维空间滤波,简化了线 聚焦滤波器的结构。同年,Xiong 等[13-14] 基于菲涅 耳衍射积分理论建立了三镜型线聚焦滤波器中的光 束传输过程,得到了对应于线聚焦滤波器的像传递 模式,并通过实验验证可知线聚焦滤波器在像传递、 口径匹配和空间滤波等功能上与传统的针孔滤波器 一致,为三镜型线聚焦滤波器的实际应用奠定了一 定基础。

为了进一步推进线聚焦滤波器在激光聚变技术 中的实际应用,本文采用像差衍射理论^[15-16]对三镜 型线聚焦滤波器进行像差分析,通过引入像差并考 察各类像差对系统性能参数的影响,明确了各类像 差在滤波系统中的容许值,以及对系统参数影响最 大的像差类型,并与传统的针孔滤波器进行对比,这 对于未来制备和实际应用三镜型线聚焦滤波器具有 一定的参考意义。

2 基本原理和模拟分析

三镜型线聚焦滤波器的结构如图1所示,其中: 柱面镜 Lens-I、滤波狭缝 Slit-I 和球面镜 Lens-II 分 别负责竖直方向的聚焦、空间滤波和准直;球面镜 Lens-II、滤波狭缝 Slit-II 和柱面镜 Lens-III 分别负 责水平方向的聚焦、空间滤波和准直;系统前焦面和 后焦面分别位于两块柱面镜 Lens-I 和 Lens-III 的 位置上,即光束入射和输出的位置。由于线聚焦滤 波器中的光束在子午面和弧矢面的聚焦是分开进行 的,而直角坐标系中畸变、像散和彗差等像差在子午 面和弧矢面上对系统的影响不一样,因此将这些像 差分为两个方向单独考虑。场曲和球差等像差的函 数表达式具有轴对称性质,因此无需区分子午面或 弧矢面的表达式。各类型像差在直角坐标系中的表 达式如表1所示($Z_0 \sim Z_s$ 为泽尼克多项式系数)。 对于三镜型线聚焦滤波器,考虑柱面镜 Lens-I、球面 镜 Lens-II 和柱面镜 Lens-III 上的像差:对于针孔滤 波器,考虑两个球面镜 Lens-I 和 Lens-II 上的像差。 入射光束采用直径为100 mm的20阶超高斯光束, 其波长为1053 nm,脉宽为10 ns,单脉冲能量为 1 kJ,经 sinc 函数调制后再自由传输 3 m 入射到滤 波器中。两种滤波器的透镜焦距均为5m,滤波光 阑的截止频率为 30 倍衍射极限(DL)。

假设像差函数为 φ(ρ,θ),利用泽尼克多项 式^[17]将像差函数展开。为了方便计算,只考虑其前 9 项的初级展开式,具体展开形式为

$$\begin{split} \phi(\rho,\theta) &= Z_0 + Z_1 \cdot \rho \cos \theta + Z_2 \cdot \rho \sin \theta + \\ Z_3 \cdot (2\rho^2 - 1) + Z_4 \cdot \rho^2 \cos^2 \theta + Z_5 \cdot \rho^2 \sin^2 \theta + \\ Z_6 \cdot (3\rho^3 - 2\rho) \cos \theta + Z_7 \cdot (3\rho^3 - 2\rho) \sin \theta + \\ Z_8 \cdot (6\rho^4 - 6\rho^2 + 1), \end{split}$$

Fig. 1 Structural schematic of three-lens slit spatial filter

表 1	泽尼克多项式展开项	
11 1		

Item	Cartesian coordinate system	Corresponding aberration		
Z_1	x	Distortion-x		
Z_2	У	Distortion-y		
Z_3	$-1+2(x^2+y^2)$	Field curvature		
Z_4	$x^2 - y^2$	Astigmatism-x		
Z_{5}	2xy	Astigmatism-y		
Z_{6}	$-2x+3x(x^2+y^2)$	Coma- <i>x</i>		
Z_7	$-2y+3y(x^2+y^2)$	Coma-y		
Z_8	$6(x^2+y^2)^2-6(x^2+y^2)+1$	Spherical aberration		

式中: ρ 为归一化极径; $Z_0 \sim Z_8$ 为泽尼克多项式的 系数。假设光束半径为a,则有 $x = a\rho\cos\theta$ 和 $y = a\rho\sin\theta$ 。 Z_0 为相位的整体平移值,这里可以不予考虑; $Z_1 \sim Z_8$ 分别为各种几何初级像差,即x方向畸变、y方向畸变、场曲、x方向像散、y方向像散、x方向彗差、y方向彗差和球差,对应在直角坐标系中的表达式如表1所示。

在透镜上引入各类单一像差会对传输光束的近 场质量和远场强度等产生影响,其中近场质量的重 要表征参数是近场调制度和近场对比度,远场强度 中的峰值强度与滤波器所需的环境真空度有关。远 场强度中作用在滤波光阑内边缘上的辐照强度直接 影响等离子体堵孔效应中的堵孔时间,是聚变激光 装置正常运行的一个重要参数。根据实际的模拟结 果发现,在这些参数中受像差影响最明显的是近场 对比度和滤波光阑的内边缘辐照强度,因此,根据这 两个参数的变化来评判滤波系统中各类像差的容许 值。近场对比度以 10%作为参量值的容许波动范 围;对于狭缝光阑的内边缘辐照强度而言,由于 10%以内的辐照强度变化不会对光阑材料的烧蚀离 化程度和堵孔时间有明显影响,因此可以适当放宽, 以 50%作为辐照强度的容许波动范围。

三镜型线聚焦滤波器中各透镜上的像差对系统 参数的影响如图 2 所示,图 2(a)~(c)分别是柱面 镜 Lens-I上的各类像差对输出光束近场对比度、狭 缝 I 和狭缝 II 内边缘辐照强度的影响,图 2(d)~ (f)分别是球面镜 Lens-II 上的像差对输出光束近场 对比度、狭缝 I 和狭缝 II 内边缘辐照强度的影响。 由于柱面镜 Lens-III 上的像差不会对滤波光阑 Slit-I 和 Slit-II 上的光参数产生影响,而 Lens-III 又正 好位于三镜型线聚焦滤波器的系统后焦面位置,其 像差对后焦面上的输出光束的近场质量也不会产生 影响,因此图 2 中并没有给出柱面镜 Lens-III 上的 像差对系统参数的影响。

根据图 2 可以得出如下结论。

1) 在柱面镜 Lens-I 和球面镜 Lens-II 上引入 的各类像差,都会导致传输光束的波面上产生各种 非均匀的相位变化,进而破坏入射的超高斯光束的 平顶特性,导致光束近场对比度升高,即影响光束质 量。除球面镜 Lens-II 上的 *x* 方向像散外[图 2(d)],像差越大,输出光束质量越差。

2) 对光束近场质量影响较大的主要是球差和场曲。由于柱面镜 Lens-I上的像差会持续影响整 个系统,比中间球面镜 Lens-II上的像差对系统的 影响更大,这使得柱面镜 Lens-I上像差的容许值相 对更小。例如,在柱面镜 Lens-I上的球差容许值仅 为 0.27λ,场曲的容许值仅为 0.24λ,而在球面镜 Lens-II上球差和场曲的容许值分别达到了 0.45λ 和 0.85λ。

3) 受像差影响,光束在两个狭缝平面处聚焦时 会有一定程度的弥散和形变,导致狭缝内边缘上所 受的辐照强度产生波动。球差会导致辐照强度下降 到一定程度后又增大,而在其他各类像差的影响下, 狭缝内边缘上的辐照强度均会随着像差的增大而不 断降低[图 2(c)和 2(f)]。对狭缝内边缘辐照强度 影响较小的主要是畸变和 y 方向像散。

4) 根据表 1 可知 x 方向的畸变仅与变量 x 相 关,y 方向的畸变仅与变量 y 相关。由于一维的滤 波狭缝光阑 Slit-I 和 Slit-II 分别仅对 y 和 x 方向起 作用,因此柱面镜 Lens-I 和球面镜 Lens-II 上的 y方向畸变对狭缝 Slit-II 内边缘上的辐照强度并没有 影响[图 2(c)和 2(f)];同理,两个透镜上的 x 方向 畸变对狭缝 Slit-I 上的内边缘辐照强度也不产生影 响[图 2(b)和 2(e)]。

柱面镜 Lens-I 上依次加上 10λ 的各类像差时, 超高斯光束在滤波狭缝 Slit-I 平面处形成的焦线图 如图 3 所示。其中,图 3(a)为无像差时的焦线,图 3(b)~(i)分别为受球差、*x* 方向彗差、*y* 方向彗差、 场曲、*x* 方向畸变、*y* 方向畸变、*x* 方向像散、*y* 方向 像散影响时形成的焦线图。由图 3 可知,球差、*y* 方 向彗差和场曲造成的焦斑弥散或形变最为严重,这 与图 2(c)中造成狭缝 Slit-I 上的内边缘辐照强度下 降相对较快的几项像差相吻合。图 3(f)、(g)、(i)分 别 与*x* 方向畸变、*y* 方向畸变和*y* 方向像散有关,

图 2 三镜型线聚焦滤波器中各透镜上的各类像差对系统参数的影响。(a)透镜 I上的各类像差对输出光近场对比度的影 响;(b)透镜 I上的各类像差对狭缝 I内边缘光强的影响;(c)透镜 I上的各类像差对狭缝 II内边缘光强的影响;(d)透 镜 II上的各类像差对输出光近场对比度的影响;(e)透镜 II上的各类像差对狭缝 I内边缘光强的影响;(f)透镜 II上 的各类像差对狭缝 II内边缘光强的影响

Fig. 2 Aberration effects of different lenses on system parameters in three-lens slit spatial filter. (a) Effect of aberrations of Lens-I on near-field contrast of output beam; (b) effect of aberrations of Lens-I on intensity on inner edge of Slit-I; (c) effect of aberrations of Lens-I on intensity on inner edge of Slit-II; (d) effect of aberrations of Lens-II on near-field contrast of output beam; (e) effect of aberrations of Lens-II on intensity on inner edge of Slit-II; (f) effect of aberrations of Lens-II on intensity on inner edge of Slit-II;

此 3 项像差造成的弥散或形变程度非常小,相应地 在图 2(c)中可见此 3 项像差引起的狭缝 Slit-I 内边 缘辐照强度的变化也非常小。

综合两项评判参量的影响,三镜型线聚焦滤 波器中柱面镜 Lens-I和球面镜 Lens-II上的各类像 差的容许值如表 2 所示。作为参照对比,表 2 中也 列出了相同条件下针孔滤波器中两个透镜上的像 差容许值。由表 2 可知,除了线聚焦滤波器中两 个透镜的 *x* 方向畸变容许值相同外,不管是线聚 焦滤波器还是针孔滤波器,位置靠后的透镜的像 差容许值基本上都比靠前的透镜的像差容许值大 很多。以针孔滤波器中的球差为例,Lens-I上的球 差容许值为 0.15λ,而在 Lens-II 上的球差容许值 则达到了 1.72λ。另外,除了透镜 Lens-I 上的 y 方 向像散容许值及球差外,针孔滤波器中透镜的像 差容许值均比线聚焦滤波器中的像差容许值大。 在三镜型线聚焦滤波器的透镜设计中最应注意的 像差是柱面镜 Lens-I 上的球差和场曲,其容许值 分别仅有 0.27λ 和 0.24λ,这两项对系统参数有较 大影响。

图 3 Lens-I上加上 10λ 各类像差时超高斯光束在滤波狭缝 Slit-I 平面处形成的焦线图。(a)无像差;(b)加球差;(c)加 x 方 向彗差;(d)加 y 方向彗差;(e)加场曲;(f)加 x 方向畸变;(g)加 y 方向畸变;(h)加 x 方向像散;(i)加 y 方向像散 Fig. 3 Focal line images of super-Gaussian beam formed on filter Slit-I plane with different aberrations of 10λ on Lens-I. (a) Without aberration; (b) with spherical aberration; (c) with x-direction coma; (d) with y-direction coma; (e) with field curvature; (f) with x-direction distortion; (g) with y-direction distortion; (h) with x-direction astigmatism; (i) with y-direction astigmatism

3 结 论

基于像差的衍射理论对三镜型线聚焦滤波器进 行像差分析,通过在滤波系统中引入各类像差,并根 据输出光束的近场对比度(容许变化值 10%)以及 系统中两个滤波狭缝的内边缘所受辐照强度(容许 变化值 50%)的变化,来评判各类像差对系统性能 参数的影响。结果表明:透镜上存在的各类像差都 会使传输光束的波面上产生各种非均匀的相位变 化,导致光束近场对比度升高,降低光束质量。同 时,像差也会导致光束聚焦时形成一定程度的弥散 和形变,从而引起滤波狭缝内边缘所受辐照强度的 变化,球差会导致辐照强度降低一定程度后又增大, 在其他像差的影响下,内边缘辐照强度均会随像差 的增大而不断降低。除了线聚焦滤波器中两个透镜 的 *x* 方向畸变容许值相同外,不管是线聚焦滤波器 还是针孔滤波器,位置靠后的透镜的像差容许值比 靠前的透镜的像差容许值大很多。另外,除了透镜 Lens-I上的 *y* 方向像散容许值以及球差外,针孔滤 波器中透镜的像差容许值均比线聚焦滤波器中的像

表 2	三镜型线聚焦滤波益和针扎滤波益的像差谷计值
Table 2	Aberration tolerances of three-lens slit spatial filte
	and pinhole spatial filter

		1	1		
Aberration		Slit spatial filter		Pinhole spatial filter	
		Lens-I	Lens-II	Lens-I	Lens-II
Distortion	x	1 . 95λ	1.95 λ	2.90 λ	×
Distortion	У	1 . 95λ	∞	2.90 λ	∞
Field curvature		0.24λ	0.85λ	0.36λ	6.00λ
Astigmatism	x	0.58λ	1.60λ	1.50 <i>λ</i>	∞
Astiginatishi	у	1 . 55λ	3.20λ	1 . 55λ	∞
Spherical aberration		0.27λ	0.45λ	0 . 15λ	1.72λ
Coma	x	0.47λ	0.72λ	0.53λ	2.10 λ
Coma	у	0.47λ	0.93λ	0.53λ	2.10λ

差容许值大。在三镜型线聚焦滤波器的透镜设计中,对系统参数具有较大影响的是柱面镜 Lens-I上的球差和场曲,其容许值分别仅为 0.27λ 和 0.24λ。

参考文献

- [1] Akhmediev N N, Korneev V I, Nabiev R F. Modulation instability of the ground state of the nonlinear wave equation: optical machine gun [J]. Optics Letters, 1992, 17(6): 393-395.
- [2] Tang S W, Zhu H D, Guo A L, et al. Study of simulation and experiment of the prompt pumpinduced wavefront of the four-pass amplification high power laser facility [J]. Chinese Journal of Lasers, 2014, 41(7): 0702005.

唐仕旺,朱海东,郭爰林,等.四程放大高功率激光 驱动器动态波前模拟与实验研究[J].中国激光, 2014,41(7):0702005.

- [3] Simmons W, Guch S, Rainer F, et al. A high energy spatial filter for removal of small scale beam instabilities in high power solid state lasers[J]. IEEE Journal of Quantum Electronics, 1975, 11(9): 852.
- [4] Campillo A J, Shapiro S L, Suydam B R. Periodic breakup of optical beams due to self-focusing [J]. Applied Physics Letters, 1973, 23(11): 628-630.
- [5] Glaze J A. High energy glass lasers [J]. Proceedings of SPIE, 1975, 15(2): 45-54.
- [6] Bliss E, Sommargren G, Weaver H. Loss of focusable energy due to small-scale nonlinear effects[J]. IEEE Journal of Quantum Electronics, 1975, 11

(9): 851.

- [7] Murray J E, Milam D, Boley C D, et al. Spatial filter pinhole development for the national ignition facility[J]. Applied Optics, 2000, 39(9): 1405-1420.
- [8] Pearlman J S, Anthes J P. Closure of pinholes under intense laser radiation [J]. Applied Optics, 1977, 16 (8): 2328-2331.
- [9] Dimakov A, Zavgorodneva I, Koval'Chuk V, et al. Investigation of the threshold of formation of a plasma screening radiation in a spatial filter [J]. Soviet Journal of Quantum Electronics, 1989, 19(6): 803-805.
- [10] Murray J E, Milam D, Boley C D, et al. Spatial filter issues [J]. Proceedings of SPIE, 1999, 3492: 496-503.
- [11] Murray J E, Estabrook K G, Milam D, et al. Spatial filter issues [J]. Proceedings of SPIE, 1996, 3047: 207-212.
- [12] Erlandson A C. Spatial filters for high average power lasers: US8320056[P/OL]. 2012-11-27[2019-03-01]. https://patents.google.com/patent/US8320056B2/ en?oq=us8320056.
- [13] Xiong H, Yuan X, Zhang X, et al. Performance of a simplified slit spatial filter for large laser systems[J].
 Optics Express, 2014, 22(18): 22211-22219.
- [14] Xiong H, Yu T C, Gao F, et al. Filtering characteristics of a three-lens slit spatial filter for high-power lasers[J]. Optics Letters, 2017, 42(22): 4593-4595.
- [15] Born M, Wolf E. Principles of optics [M]. 7th ed. Cambridge: Cambridge University Press, 1999: 517-539.
- [16] Cai Y N, Wang Z J, Liang Y S, et al. Optimization of the doughnut-shaped depletion spot in stimulated emission depletion microscopy [J]. Acta Optica Sinica, 2017, 37(3): 0318009.
 蔡亚楠,汪召军,梁言生,等.受激发射损耗显微中 空心损耗光的光强分布优化研究[J].光学学报, 2017, 37(3): 0318009.
- [17] Li T J, Wu P, Yang Z, et al. Aberration analysis of membrane diffractive lens with substrate deformation error [J]. Acta Optica Sinica, 2017, 37 (10): 1011003.
 李韬杰, 吴鹏,杨正,等. 薄膜衍射主镜基底面形误 差的像差转性分析[1] 光尝尝报 2017 37 (10):

差的像差特性分析[J].光学学报,2017,37(10): 1011003.